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Vector-Based42. Vector-Based Spoken Language Classification

H. Li, B. Ma, C.-H. Lee

This chapter presents a vector space charac-
terization (VSC) approach to automatic spoken
language classification. It is assumed that the
space of all spoken utterances can be represented
by a universal set of fundamental acoustic units
common to all languages. We address research is-
sues related to defining the set of fundamental
acoustic units, modeling these units, transcrib-
ing speech utterances with these unit models and
designing vector-based decision rules for spoken
language classification. The proposed VSC ap-
proach is evaluated on the 1996 and 2003 National
Institute of Standards and Technology (NIST) lan-
guage recognition evaluation tasks. It is shown
that the VSC framework is capable of incorpo-
rating any combination of existing vector-based
feature representations and classifier designs.
We will demonstrate that the VSC-based classi-
fication systems achieve competitively low error
rates for both spoken language identification and
verification.

The chapter is organized as follows. In Sect. 42.1,
we introduce the concept of vector space char-
acterization of spoken utterance and establish
the notion of acoustic letter, acoustic word and
spoken document. In Sect. 42.2 we discuss acous-
tic segment modeling in relation to augmented
phoneme inventory. In Sect. 42.3, we discuss voice
tokenization and spoken document vectorization.
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In Sect. 42.4, we discuss vector-based classifier
design strategies. In Sect. 42.5, we report several
experiments as the case study of classifier design,
and the analytic study of front- and back-end.
Finally in Sect. 42.6, we summarize the discussions.

Spoken language classification is the process of de-
termining the language identity of a given spoken
utterance. Like many frontiers in pattern recognition,
spoken language classification has been formulated in
the framework of statistical modeling, where a model
is built for each spoken language by fitting the model
parameters to maximize the observed data likelihood.
A spoken language classification system typically con-
sists of a front- and a back-end. The front-end extracts
features in order to characterize spoken languages, while
the back-end makes classification decision based on the
feature pattern of a test utterance.

When human beings are constantly exposed to a lan-
guage without being given any linguistic knowledge,
they learn to determine the language identity by per-
ceiving some of the language cues. This motivates
us to explore useful language cues from phonotac-
tic statistics of spoken languages. Suppose that the
world’s languages can be characterized by a univer-
sal set of acoustic units. Any speech segment can
now be considered as a realization of a concatena-
tion of such units analogous to representing a text
passage as a sequence of basic symbols, such as Eng-
lish letters or Chinese characters. Using a collection
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826 Part G Language Recognition

of models, one for each unit, a given speech utter-
ance can be automatically transcribed into a sequence
of sound alphabets or acoustic letters By grouping ad-
jacent acoustic letters to form acoustic words we can
convert any collection of speech segments into a spo-
ken document. Similar to representing a text document
as a term vector – as is done in information retrieval
and text categorization – a spoken document can now
be represented by a vector with key terms defined as the
set of all acoustic words. This process is also referred
to as vectorization, which leads us into several inter-
esting topics, such as selection of acoustic letters and
acoustic words, and dimensionality reduction of term
vector.

With recent advances in machine learning tech-
niques, vector space modeling has emerged as
a promising alternative solution to multiclass speech
classification problem. The vector space approach in-
herits several attractive properties that we discover in
text-based information retrieval. For example, it han-
dles the fusion of different types of language cues
in a high-dimensional vector seamlessly. As opposed
to similarity-based likelihood measurement, the vector
space approach is motivated by discriminative training,
which is aimed at minimizing misclassification error. In
this chapter, we are interested in practical issues related
to vectorization of spoken document and vector-based
classifier design.

42.1 Vector Space Characterization

In a typical setting, spoken language classification is
usually formulated as a probabilistic pattern recogni-
tion problem [42.1] in which the a posterior probability,
P(X|λl), of the l-th language to be considered with
a model λl given an unknown utterance X, is com-
puted. To make a decision, the language that gives the
maximum P(X|λl) is usually identified as the target lan-
guage. Many algorithms developed in automatic speech
and speaker recognition [42.2] have been adopted and
extended to language recognition. Recent advances in
acoustic and language modeling [42.3] have also con-
tributed to the technological progress of pattern recog-
nition approaches to spoken language classification.

On another front vector space characterization has
become a prevailing paradigm in the information re-
trieval (IR) community since its introduction in the early
1970s [42.4]. Inspired by recent advances in machine
learning, a wide variety of VSC approaches have been
adopted successfully to text categorization (TC) [42.5],
which essentially refers to the assigning of a category
or a topic to a given text document based on the fre-
quencies of co-occurrences of certain key terms [42.6]
in the particular category or topic of interest. A simi-
lar VSC treatment of spoken documents has also been
attempted [42.7]. Since the feature vectors to be consid-
ered here are often very high dimensional, sometimes
in tens or even hundreds of thousands in some cases,
a probabilistic characterization of these vectors is usu-
ally not an easy task due to several factors: the lack of
training data, the difficulty to specify a good model, and
the curse of dimensionality in the estimation of so many
parameters with so little data. Nonetheless, vector-based

classifier design has some of its own attractive proper-
ties that does deserve some attention even without using
conventional statistical modeling techniques.

In this chapter, we explore VSC characterization of
spoken utterances and the VSC-based spoken language
classification system design. We consider that a par-
ticular spoken language will always contain a set of
high-frequency function words, prefixes, and suffixes,
which are realized as acoustic substrings in spoken ut-
terances. Individually, those substrings may be shared
across languages. Collectively, the pattern of their co-
occurrences can facilitate the discrimination of one
language from another.

Suppose that an utterance X, represented by a se-
quence of speech feature vectors O, is decoded or
tokenized, into a spoken document, T (X), consisting of
a series of I acoustic units, T (X) = {t1 . . . , ti . . . , tI },
each unit is drawn from a universal inventory,
U = {u1, . . . , uj , . . . uJ }, of J acoustic letters shared
by all the spoken languages to be considered, such that
ti ∈ U . In the following, we will refer to the process of
decoding speech into spoken documents as tokenization.
We are then able to establish a collection of acous-
tic words by grouping units occurring in consecutive
orders to obtain a vocabulary of M distinct words,
W = {w1, . . . , wm, . . . wM}, such that each wm can be
a single-letter word like (uj ), a double-letter word like
(ujuk), a triple-letter word like (ujukul), and so on.
Usually the vocabulary size, M, is equal to the total
number of n-gram patterns needed to form words, e.g.,
M = J + J × J + J × J × J if only up to three tokens are
considered as a valid acoustic word. Next, we can use
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Vector-Based Spoken Language Classification 42.2 Unit Selection and Modeling 827

some form of function f (wm), such as latent seman-
tic indexing (LSI) [42.8], to evaluate the significance
of having the word wm in the document, T (X). We are
now ready to establish an M-dimension feature vector,
v = [ f (w1), . . . , f (wm), . . . f (wM)]T with xT denoting
the transpose of vector x, for each spoken document.

It is clear that we need a not-too-small number of
fundamental acoustic units to cover the acoustic varia-
tion in the sound space. However a large J will result in
a feature vector with a very high dimension if we would
like to cover as many unit combinations when form-
ing acoustic words. For example, with a moderate value
of J = 256, we have M = 65 792 even when we only
consider words less than or equal to two letters. This
is already a very large dimensionality not commonly
utilized in speech and language processing algorithms.
Finally, a VSC-based classifier evaluates a goodness of
fit, or score function Sl(v) = S(v|λl), between a given
vector, v, and a model of the l-th spoken language, λl , to
make a decision. Any vector-based classifier can be used
to design spoken language identification and verification
systems.

In language identification, we assume that each lan-
guage to be recognized by the system has been registered
and known to the system in advance. Therefore, it is
a closed-set test. The objective is to identify the language
l, among a pool of L candidates, that has the closest
match or the highest score to a given test sample. Sys-
tem performance is often measured by the recognition
error rate. On the other hand, in language verification,
also known as language detection, the test language may
or may not be known in advance to the system. This is

therefore an open-set test. The objective of a verifica-
tion test is to confirm whether a test sample belongs to
the language that it is claimed to be. In this case, the test
sample is compared against the model of the claimed
language to produce a verification score. A decision is
then made based upon whether the score is above or be-
low a threshold. Two types of errors, false alarms (or
false positives) and misdetections (or false negatives),
are thus resulted. A wide range of error pairs can be ob-
tained depending on the operating verification threshold
of the system. To facilitate comparisons between dif-
ferent systems, an equal error rate (EER), indicating the
error when the two rates are the same, is usually reported
as the system performance. The NIST language recog-
nition evaluation (LRE) is a series of open evaluations
for benchmarking the progress of ongoing technology
(http://www.nist.gov/speech/tests/index.htm).

Three sets of issues to be addressed in designing
a VSC-based language classification system include:
(i) fundamental unit selection and modeling, (ii) ex-
traction of a spoken document vector, which can be
considered as a front-end design, and (iii) vector-based
classifier learning, which is labeled as a back-end design.
These will be discussed in detail in the following three
sections, respectively. Issues related to the accuracy of
tokenization, the discrimination of feature vectors, and
the performance of language classifiers will also be
discussed in the remainder of the chapter. By having
various combinations of the front- and back-ends, we
have the flexibility to design a collection of systems
that cover a wide spectrum of system performances and
computation complexities.

42.2 Unit Selection and Modeling

The first issue to be considered is selection and model-
ing of the universal set of fundamental acoustic units.
Spoken languages, despite sounding different from one
another, do share some basic similarities in their acous-
tic characteristics. In the following, we list the 10 most
common words in English and Chinese:

• the . . . of . . . to . . . a . . . and . . . in . . . that . . .

for . . . one . . . is . . . (English)• de ( ) . . . yi ( ) . . . he ( ) . . . zai ( ) . . .

shi ( ) . . . le ( ) . . . bu ( ) . . . you ( ) . . .

zhe ( ) . . . ge ( ) . . . (Mandarin)

By coincidence, the top-ranked English word, (“the”),
and the most common Chinese Mandarin word, (“de”),

share a similar pronunciation, resulting in a similar unit
transcription if a common collection of sound unit mod-
els are used to decode both English and Mandarin speech
segments containing this pair of words. Nonetheless, we
can rely on the co-occurrence statistics of those words to
discriminate one language from another. As discussed
in Sect. 42.1, a decoder or tokenizer is needed to con-
vert spoken utterances into sequences of fundamental
acoustic units specified in an acoustic inventory. We be-
lieve that units that are not linked to a particular phonetic
definition can be more universal, and are therefore con-
ceptually easier to adopt. Such acoustic units are thus
highly desirable for universal language characterization,
especially for rarely observed languages or languages
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828 Part G Language Recognition

without an orthographic system or a well-documented
phonetic dictionary.

A number of variants have been developed along
these lines, which were referred to as language-
independent acoustic phone models. Hazen reported
using 87 phones from the Oregon Graduate Institute
multilanguage telephone speech corpus (OGI-TS) cor-
pus [42.9]. Berkling [42.10] explored the possibility
of finding and using only those phones that best dis-
criminate between language pairs. Berkling [42.11] and
Corredor-Ardoy [42.12] used phone clustering algo-
rithms to find a common set of phones for languages.
However, these systems are constrained to operate only
when a phonetically transcribed database is available.
On a separate front, a general effort to circumvent the
need for phonetic transcription can be traced back to
Lee’s work [42.13] in acoustic segment models (ASMs)
in which a collection of ASMs were used to character-
ize the fundamental set of speech units, and constructed
in an unsupervised manner without any linguistic def-
inition. Acoustic words were thus formed by decoding
word examples into sequences of such acoustic units,
and then utilized for medium-vocabulary isolated-word
recognition. A similar ASM approach has recently been
adopted for language identification [42.14]. We first dis-
cuss the grouping of phone sets from multiple phone
inventories of different languages to form a universal
collection of units and corresponding phone models.

42.2.1 Augmented Phoneme Inventory (API)

Attempts have been made to derive a universal collection
of phones to cover all sounds described in an interna-
tional phonetic inventory, e.g., the international phonetic
alphabet or Worldbet [42.15]. This is a challenging
endeavor in practice. Note that these sounds overlap
considerably across languages. One possible approxi-
mation is to form a superset of phonemes from several
languages. We call this set the augmented phoneme
inventory (API). This idea has been explored in one
way or another in many studies [42.9–11]. A good in-
ventory needs to cover phonetically as many targeted
languages as possible. This method can be effective
when phonemes from all the spoken languages form
a closed set as studied by Hazen [42.9]. Results from hu-
man perceptual experiments have also shown a similar
effect whereby listeners’ language identification perfor-
mance improved by increasing their exposure to multiple
languages [42.16].

The API-based tokenization was recently stud-
ied [42.17] by using a set of all 124 phones from

Table 42.1 The languages and phone sets of API I and II

API I Count API II Count

English 44 English 48

Mandarin 43 Mandarin 39

Korean 37 German 52

General 4 Hindi 51

Japanese 32

Spanish 36

Total 128 Total 258

English, Korean, and Mandarin, plus four noise units,
and extrapolating them to the other nine languages in
the NIST LRE tasks. This set of 128 units is referred to
as API I, which is a proprietary phone set defined for
an internal database called the Institute for Infocomm
Research language identification (IIR-LID) database.
Many preliminary experiments were conducted using
the IIR-LID database and the API I phone set. For ex-
ample, we explored an API-based approach to universal
language characterization [42.17], and a text categoriza-
tion approach [42.7], which formed the basis for the
vector-based feature extraction to be discussed in the
next section. To expand the acoustic and phonetic cover-
age, we used another larger set of APIs with 258 phones,
from the six languages defined by the OGI-TS database.
These six languages all appear in the NIST LRE tasks.
This set will be referred to as API II. A detailed break-
down of how the two phone sets were formed with phone
set counts for each language is listed in Table 42.1.

Once the set of units are defined, models for each
individual language can be obtained using conventional
hidden Markov model (HMM) [42.18] tools trained on
the speech examples specifically collected for the par-
ticular language. The collection of these phone models
can be used to decode a given utterance by performing
parallel phone recognition (PPR) [42.1]. The result-
ing multiple sequences of phone units can be used to
form the spoken document vector corresponding to the
given utterance. We will discuss both PPR and spoken
document vectorization in later sections.

42.2.2 Acoustic Segment Model (ASM)

The conventional phone-based language characteriza-
tion commonly used in automatic speech recognition and
spoken language identification suffers from two major
shortcomings. First, a combined phone set, such as API I
mentioned above, from a limited set of multiple lan-
guages cannot be easily extended to cover new and rarely
observed languages. Second, to train the acoustic mod-
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Vector-Based Spoken Language Classification 42.2 Unit Selection and Modeling 829

els for each language, a collection of transcribed speech
data is needed, but is often difficult to come by for all
languages of interest. Furthermore, acoustic mismatches
may exist among speech collected in different countries
and under various acoustic conditions so that the col-
lection of phone models may not work well for some
intended languages under diverse test environments. To
alleviate these difficulties, a data-driven method that
does not rely on phonetically transcribed data is often
preferred. This can be accomplished by constructing
consistent acoustic segment models [42.13] intended to
cover the entire sound space of all spoken languages in
an unsupervised manner using the entire collection of
speech training examples for all languages. The ASM
framework takes advantage of the concept of language-
independent acoustic phone models, and benefits from
the unsupervised acoustic modeling technique.

Next, we present an ASM method to establish
a universal representation of acoustic units for multiple
languages [42.17]. As in any other hidden Markov mod-
eling approaches, the initialization of ASMs is a critical
factor to the success of ASM-based systems. Note that
the unsupervised, data-driven procedure to obtain ASMs
may result in many unnecessary small segments because
of the lack of phonetic or prosodic constraints (e.g., the
number of segments in a word and the duration of an
ASM) during segmentation. This is especially severe in
the case of segmenting a huge collection of speech ut-
terances given by a large population of speakers from
different language backgrounds. The API approach uses
phonetically defined units in the sound inventory. It has
the advantage of having phonetic constraints in the seg-
mentation process. By using the API to bootstrap ASMs,
we effectively incorporate some phonetic knowledge re-
lating to a few languages in the initialization to guide the
ASM training process, which is described as follows.

Step 1
Carefully select a few languages, typically with large
amounts of labeled data, and train language-specific
phone models. Choose a set of J models for bootstrap-
ping.

Step 2
Use these J models to decode all training utterances in
the training corpora. Assume the recognized sequences
are true labels.

Step 3
Force-align and segment all utterances in the training
corpora, using the available set of labels and HMMs.

Step 4
Group all segments corresponding to a specific label into
a class. Use these segments to retrain an HMM.

Step 5
Repeat steps 2–4 several times until convergence.

In this procedure, we jointly optimize the J mod-
els as well as the segmentation of all utterances.
This is equivalent to the commonly adopted segmental
maximum likelihood (ML) and k-means HMM train-
ing algorithm [42.18] through iterative optimization of
segmentation and maximization. We found that API-
bootstrapped ASMs are more stable than the randomly
initialized ASMs. There are also other ways of initializ-
ing ASMs, by imposing language-independent phonetic
or prosodic constraints. The API-bootstrapped ASMs
outperforms the API by a big margin in our 1996 NIST
LRE task. Readers are referred to [42.17] for details of
these ASM experiments. Using this single set of ASMs,
we can now transcribe all spoken utterances from any
language into sequences of units coming from a common
alphabet. We call this process universal voice tokeniza-
tion (UVT). Instead of using a single set of universal
ASMs, we can also utilize multiple sets of fundamental
units for parallel voice tokenization (PVT). For exam-
ple, starting with the three-language API I units defined
above, we can train three sets of language-dependent
ASMs, bootstrapped from the phone models for each
of the three languages. In this way, we can gener-
ate multiple sets of spoken documents, one from each
language-specific tokenizer.

42.2.3 Comparison of Unit Selection

With an established acoustic inventory obtained from
the API or the ASM method, we are now able to tok-
enize any given speech utterance into a token sequence
T (X), in a form similar to a text-like document. Note that
ASMs are trained in a self-organized manner. We may
not be able to establish a phonetic lexicon using ASMs
and translate an ASM sequence into words. However, as
far as language classification is concerned, we are more
interested in a consistent tokenization than the underly-
ing lexical characterization of a spoken utterance. The
self-organizing ASM modeling approach offers a key ad-
vantage: we no longer require the training speech data
to be phonetically transcribed.

In summary, the main difference between the API
and ASM methods is the relaxation of phone transcrip-
tion for segmentation. In the API approach, we train the
phone models according to manually transcribed phone
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830 Part G Language Recognition

labels while via ASMs, the segmentation is done in iter-
ations using automatic recognition results. In this way,
ASM gives us two advantages: (i) it allows us to adjust
a set of API phones from a small number of selected
languages towards a larger set of targeted languages;

(ii) the ASM can be trained on the similar acoustic data
as are used for the intended task, thus potentially min-
imizing mismatch between the test data and the API
that is trained on a prior set of phonetically transcribed
speech.

42.3 Front-End: Voice Tokenization and Spoken Document Vectorization

We are now ready to represent a spoken document or
a spoken query by a vector whose dimensionality is equal
to the size of the total number of useful features, includ-
ing the statistics of the units and their co-occurrences.
It is precisely with the usage of such high-dimensional
vectors that we expect the discrimination capability of
the feature vector to improve the performance even when
only phonotactic features are used. The voice tokeniza-
tion (VT) discussed here can typically be accomplished
in a way similar to continuous phone recognition to de-
code a spoken utterance into a sequence of phone units.
Readers are referred to [42.3] for an in-depth discussion
of the modeling and decoding techniques.

Figure 42.1a,b illustrates a vectorization process that
converts a spoken utterance into a document vector with
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Fig. 42.1a,b Front-end: spoken utterance tokenization and
vectorization (a) Spoken utterance tokenization and vector-
ization with PVT. (b) Spoken utterance tokenization and
vectorization with UVT.

the PVT and UVT front-ends. An unknown testing ut-
terance is represented as a query vector by the front-end.
For the PVT front-end with an F-language superset of
APIs as initialization, the VSC vectorization (Fig. 42.1a)
forms a large composite document vector, or supervec-
tor, v = [vT

1 , . . . , vT
f , . . . , v

T
F]T by stacking F vectors,

with each vector, v f , representing the document vec-
tor of the f -th language, obtained from the individual
phone recognizers. On the other hand, for the UVT front-
end, it constructs a single document vector v from the
single phone recognizer. Figure 42.2a,b illustrate the
language identification and verification processes using
a four-language API superset example.

Since high-performance language-dependent acous-
tic and language models of phones are likely to
be unnecessary for tokenization, we no longer need
large amounts of training speech samples from each
of the spoken languages. Instead, we only require
a moderate-sized language-dependent training set of
spoken documents in order to obtain a collection of
spoken document vectors to be used to train a language-
specific classifier for each language. When trigrams with
128 ASM units are incorporated, the vector dimension-
ality increases to over two million, which is well beyond
the capability of current technology. It would be useful
to find a balance between the acoustic resolution, i. e.,
the number of units J , needed to model the universal
sound space for all languages, and the language reso-
lution, i. e., the dimensionality of the spoken document
vector M, needed to provide an adequate discriminative
power for language identification. Readers are referred
to [42.19] for a detailed study.

Many studies on vector-based document represen-
tation are available in information retrieval and text
categorization literature [42.4, 5, 7, 20, 21]. In this chap-
ter, we focus on language feature characterization that
is used to discriminate between languages. Intuitively,
sounds are heavily shared across different spoken lan-
guages because of the same human speech production
mechanism that is used to produce them. The acoustic
unit as proposed in Sect. 42.2 allows us to move away
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Vector-Based Spoken Language Classification 42.4 Back-End: Vector-Based Classifier Design 831

from the conventional lexical descriptions of spoken
languages. To account for the sequential, acoustic–
phonotactic constraints, such as lexical constraints, we
introduce the concept of an acoustic word (AW). An
AW is typically smaller than a lexical word, and is
composed of acoustic letters, such as the set of acous-
tic segment units, in an n-gram form. By exploiting
the co-occurrence statistics of AWs, we can improve
the discrimination power of the document vectors by
incorporating acoustic words of different orders.

Suppose that we have a token sequence,
{t1, t2, t3, t4}. We first derive the unigram statistics from
the token sequence itself. We then compute the bigram
statistics from (#t1), (t1t2), (t2t3), (t3t4) and (t4#) where
the acoustic vocabulary is expanded to the token’s right
context. Similarly, we can extend this to the trigram
statistics using (#t1t2), (t1t2t3), (t2t3t4) and (t3t4#) to ac-
count for both left and right contexts. The # sign is a place
holder for free (or do not care) context. In the inter-
est of manageability, we use only up to token trigrams.
In this way, for an acoustic vocabulary of J tokens,
we have potentially J × J bigram and J × J × J trigram
AWs to form a vocabulary of M = J + J × J + J × J × J
AWs. Let us use the API I set defined in Sect. 42.2.1
to illustrate the concept of PVT-based vectorization. As
shown in the left half of Table 42.1 that there are three
subsets of units of sizes 44, 43, and 37 for English,
Mandarin, and Korean, respectively. If we form AWs
of up to two letters, this results in a lexicon of size
442 +432 +372 +44+43+37 = 5278, which is also
the dimensionality of the document vectors.

This bag-of-sounds concept [42.22] is analogous to
the bag-of-words paradigm originally formulated in the
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Fig. 42.2a,b Back-end: spoken language classification (a) Lan-
guage identification using multiclass classification (four languages).
(b) Language verification with independent Bayes decisions (four
languages).

context of information retrieval and text categorization.
In human languages, some words invariably occur more
frequently than others. One of the most common ways to
express this notion is known as the Zipf’s law [42.23,24],
which states that there is always a set of words that
dominates most of the other words of a language in
terms of their frequency of use. From some preliminary
data, the theory can be extended to spoken words as well.
This motivates the VSC-based approach.

42.4 Back-End: Vector-Based Classifier Design

After a spoken utterance is tokenized and vectorized
into a high-dimensional vector, language classification
can be cast as a vector-based classification problem.
There are many ways to construct the VSC back-end.
The support vector machine (SVM) framework is a pop-
ular choice in many applications [42.5, 25]. Since the
training of SVMs is usually optimized on a structural
risk-minimization principle [42.26], SVMs have been
shown to achieve good performances in several real-
world tasks. In the rest of the chapter, we will use the
SVM framework to illustrate the design of language
classification systems. Other vector-based classifiers can
also be utilized. Spoken language identification and ver-

ification system block diagrams for a four-language
(L = 4) case are illustrated in Figs. 42.2a and b, re-
spectively.

To train a two-class SVM, also known as a bi-
nary SVM, any input document vector v is labeled as
Y+ or Y−, depending on whether the input belongs to
the desired language category or not. Given a train-
ing database of D spoken document vectors, the binary
SVM is a classifier of the form g(v) = ΩTψ(v)+ω0,
characterized by a weight vector Ω, an offset ω0, and
a kernel function ψ(·). We can augment Ω with ω0
and ψ(v) with a unity, thus eliminating ω0 in the rest
of our discussion. SVM learning is usually posed as
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an optimization problem with the goal of maximizing
a margin, i. e., the distance between the separating hy-
perplane, ΩT ·ψ(v) = 0, and the nearest training vectors,
such that if g(v) > 0, then v ∈ Y+, and if g(v) ≤ 0, then
v ∈ Y−. An extension of this formulation also allows for
a wider margin at the cost of misclassifying some of the
training examples. We used the SVMlight version 6.01
program to train all SVM models discussed in this chap-
ter (http://svmlight.joachims.org/). This package allows
us to explore both linear and nonlinear SVM kernels.
A linear kernel SVM has ψ(v) = v. Other forms of ker-
nels can also be used. Without loss of generality, we
limit our discussion to linear-kernel SVM in the rest of
this chapter.

42.4.1 Ensemble Classifier Design

When the number of classes L is greater than two,
maximum margin classifier designs do not extend eas-
ily. Various approaches have been suggested. Some
follow the concept of ensemble classifiers by having
a collection of binary SVMs, such as one-versus-rest,
one-versus-one, and their variants [42.27]; others build
decision trees using top-down greedy algorithms or
bottom-up clustering algorithms. We discuss these in
detail in the present section.

Given L competing classes with all training vec-
tors labeled as one of the L classes, the training
set, T , is divided into a collection of L subsets,
T = {T1 . . . , Tl . . . , TL }, with all samples that are la-
beled as class l belong to the set Tl .

One-Versus-Rest (OVR) SVM
This is conceptually the simplest multiclass ensemble
classifier. We build L binary SVMs, each with the tar-
get l-th class as the positive category, with positive

�� �� ��

Fig. 42.3a–c SVM-based ensemble classifier design (a) One-versus-rest SVM. (b) One-versus-one SVM. (c) Generalized
SVM.

training set Tl , and the rest belonging to the negative
category, with training set T̄l = {vi |i �= l} of negative
examples. This approach is usually computationally ex-
pensive since we need to solve L quadratic program
(QP) optimization problems, each involving D vectors
with a large dimensionality, M. Given a test sample,
the OVR decision function chooses the class that corre-
sponds to the maximum value specified by the furthest
hyperplane. As illustrated in Fig. 42.3a, the QP solutions
result in the dotted line partitions while the decisions are
made based on the solid line partitions. This gives errors
as shown in the shaded area of Fig. 42.3a. Since there
are usually more negative samples than positive ones,
the OVR SVMs are usually hard to train because of the
imbalance in the data distribution.

One-Versus-One (OVO) SVM
This method constructs binary SVMs for all L × (L −
1)/2 pairs of classes, one SVM for each pair of com-
peting classes. When compared with OVR SVM, the
OVO SVM method significantly reduces the computa-
tional needs in training because there are less training
examples to train each pairwise SVM. In total, we need
to solve L × (L −1)/2 QP optimization problems. For
each SVM, only data from the two competing classes are
involved. Hence, we deal with a much smaller QP prob-
lem than that in OVR SVM. However, OVO SVM still
leaves some undecided regions as shown in the shaded
area of Fig. 42.3b.

Generalized SVM
This method is similar to OVR except that it modifies
the support vector loss function to deal directly with
multiple classes [42.28,29]. Instead of solving a collec-
tion of independent SVMs, this method seeks to solve
a single, monolithic QP problem of size (L −1)× D, that
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maximizes the margins between all class pairs simulta-
neously. In general, it is computationally more expensive
to solve a monolithic problem than multiple binary sub-
problems, such as is done by OVO SVMs, with the same
amount of training data [42.25]. Generalized SVM can
lead to L decision regions as illustrated in Fig. 42.3c.
Although generalized SVMs are difficult to learn, other
multiclass classifiers can serve this purpose. For example
a maximum figure-of-merit (MFoM) learning algorithm
has been shown to be effective in discriminative mul-
ticlass text categorization [42.6] and spoken language
identification [42.7].

42.4.2 Ensemble Decision Strategy

The idea of an ensemble decision is to consult a large
number of independently constructed classifiers to make
a decision based on consensus. It provides a solution to
the multiclass classification problem with independently
trained binary classifiers. First, we construct many sub-
ordinate classifiers, each responsible for removing some
uncertainty regarding the class assignment of the test
sample; and secondly, we apply classification schemes
to make collective decisions. To make a final decision
for a multiclass classification problem with an ensemble
of binary classifiers, two strategies have been well stud-
ied, the maximum wins (max. wins) (MW) and directed
acyclic graph (DAG) strategies. The MW strategy makes
a collective decision based on a number of individual
decisions. Each decision is represented by an individual
binary SVM. The collection of individual SVMs is ar-
ranged in a flat structure. In practice, we evaluate a test
sample against all the L × (L −1)/2 binary SVMs. The
class that gains most of the winning votes is then chosen
as the identified class.

A DAG is a graph whose edges have an orien-
tation but with no cycles. The DAG strategy [42.30]
uses a rooted binary directed acyclic graph which has
L × (L−1)/2 internal nodes with L leaves. Figure 42.4a
gives an example of a four-class DAG classifier, with six
internal nodes and four leaves. Each node represents one
of the L ×(L −1)/2 binary SVM. To evaluate a test sam-
ple v, starting at the root node, a binary decision is made
at each node to eliminate one candidate class every time
a node is visited. The node that survives all the elimina-
tions is eventually chosen as the identified class. Readers
can walk through the example in Fig. 42.4a. Thus, for
a problem of L-class classification, there are L−1 steps
of decisions before we arrive at an answer. Furthermore,
a node or leaf in DAG is reachable by more than one pos-
sible path through the system. Therefore, the decision
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Fig. 42.4a,b Decision strategy (a) Direct acyclic graph. (b) Binary
decision tree.

graph that the path traverses is a DAG, and not sim-
ply a tree. In this way, DAG allows for a more efficient
representation of redundancies and repetitions that can
occur in different branches of the tree, by allowing pos-
sible merging of different decision paths. The difference
between a DAG and a decision tree can be observed by
comparing the tree structures in Fig. 42.4b and the DAG
in Fig. 42.4a.

Although both the MW and DAG strategies make
decisions based on the same OVO SVMs, the DAG
approach demonstrates two clear advantages: (i) with
a decision tree architecture, DAG is a much more
efficient strategy than the MW during testing. It
only involves (L −1) SVM operations, as opposed to
L × (L −1) /2 comparisons in MW; and (ii) DAG is
amenable to a VC-style bound on the generalization er-
ror while bounds on the generalization errors have yet
to be establish for the MW method [42.30].

While the MW and DAG strategies can produce
accurate class predictions, they lack a structural rep-
resentation for class similarities. With a large number of
classes, we may want to have a meaningful organization
of these classes. As shown in Fig. 42.4b, a decision tree
presents the classes in a hierarchical structure of clusters
and subclusters according to their proximity. It makes
a final decision through steps of subdecisions for a test
sample. At each node in the tree, a decision is made to
reduce the uncertainty of the test samples. Starting from
the root node through the successor nodes, we make the
final decision when a leaf node is reached.

42.4.3 Generalized VSC-Based Classification

We have discussed designing ensemble classifiers and
decision strategies based on high-dimension feature vec-
tors and binary SVMs. In some cases, it is beneficial to
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reduce feature dimensions in order to compensate for
the lack of training vectors and potential measurement
noise in feature extraction. Once we have a vector of
lower dimension many well-known probabilistic mod-
eling and machine learning techniques can be used to
design classifiers and formulate decision rules.

We also consider an indirect vectorization mecha-
nism based on the scores obtained from the ensemble
classifiers discussed earlier. Since these scores char-
acterize the distribution of the outputs of a variety
of classifiers, they can be grouped together to form
a score supervector describing an overall behavior of
a score distribution over different classifiers on all com-
peting classes. One example of such a supervector is
to concatenate HMM state scores from all competing
models to form an overall score vector. This approach
has been shown to have good discrimination power
in isolated-word recognition [42.31, 32]. Since these
score supervectors are usually obtained from a finite
set of ensemble classifiers, their dimensionality is usu-
ally much smaller than that of the spoken document
vectors discussed in Sect. 42.3. These score supervec-
tors are more amendable to using the conventional
probabilistic modeling approaches. We call this combi-
nation framework generalized VSC-based classification;
it uses high-dimensional feature vectors to generate
scores from a collection of ensemble classifiers, and
forms low-dimensional score supervectors to perform
final classifier design and decisions. All the language
identification and verification experiments to be dis-
cussed in Sect. 42.5 are based on this generalized VSC
classification approach.

Feature Reduction
In many cases, it is desirable to reduce the dimension-
ality of the document vectors to a manageable size so
that probabilistic models, such as a Gaussian mixture
model (GMM), can be easily utilized. Many dimension-
ality reduction approaches, such as truncated singular
value decomposition (SVD) [42.8] or principal compo-
nent analysis (PCA) [42.33], have been studied. Suppose
that we are given a database with D documents and M
distinguished attributes, also known as terms. Let A de-
note the corresponding M × D document-term matrix
with entries am,d that represent the importance of the m-
th term in the d-th document. SVD effectively reduces
the dimensionality by finding the closest rank-R approx-
imation to A in the Frobenius norm, while PCA finds the
R-dimensional subspace that best represents the full data
with respect to a minimum squared error. Although the
SVD or the PCA method finds subspaces that are use-

ful for representing the original high-dimensional vector
space, there is no reason to assume that the resulting pro-
jections must be useful for discriminating between data
in different classes [42.34].

Linear discriminant analysis finds a decision surface,
also known as a hyperplane, that minimizes the sam-
ple risk or misclassification error for linearly separable
classes. In the two-class case, the linear discriminant
function [42.34] is expressed as g(v) = ΩTv, with g(v)
representing the signed distance between v and the deci-
sion surface ΩTv = 0. In this way, from the perspective
of dimensionality reduction, a multidimensional feature
vector v is projected to a one-dimensional space by g(v).

Vectorization with Ensemble Scores
If we employ a linear SVM for each of the subordi-
nate classifiers, the outputs g(v) from the SVMs then
form a vector of signed distance. In this way, a high-
dimensional document vector can be effectively reduced
to a much lower dimensionality. From an OVR SVM
ensemble classifier, we obtain a vector of Q = L dimen-
sionality; from an OVO SVM ensemble classifier, we
arrive at a vector of Q = L × (L −1) /2 dimensionality.
Clearly, not only do we effectively reduce the dimension-
ality from a large M to a small Q, but we also represent
the spoken document vector in a discriminative space of
language pairs.

Studies show that an ensemble classifier performs
well when the number of subordinate classifiers Q
is set to around 10 log2 L . In general, more subordi-
nate classifiers improve performance, but at a higher
computational cost [42.35]. Hence, from the perspec-
tive of expressiveness, OVO SVM ensemble classifier
seems to be a better choice than OVR SVM when we
are dealing with 15 languages as in CallFriend, where
we have 105 = 15 × (15 −1)/2 OVO SVM outputs
versus 15 OVR SVM outputs (http://www.ldc.upenn.
edu/Catalog/project_index.jsp).

Generalized Vector-Based Classifiers
and Decision Rules

We mentioned above that generalized SVMs attempt to
design ensemble classifiers by considering all possible
partitions of the vector space as shown in Fig. 42.3c,
which is usually a difficult problem. On the other hand,
if we can define a class discriminant function, S(v|λl)
for the l-th class with λl as the model for the target l-th
class, and be able to consistently rank a goodness-of-fit
score between the unknown vector v and the model λl ,
a decision rule for identification can easily be formulated
as:
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l̂ = argmax
l

S(v|λl) . (42.1)

Similarly, a verification decision can be made to
accept the claimed class identity l if:

S(v|λl)− S(v|λ̄l) > τl , (42.2)

with S(v|λ̄l) denoting an antidiscriminant function score
that is typically a score representing the collective con-
tribution from all competing classes other than the l-th
class, and τl denoting the verification threshold for the
l-th class.

One good example is a linear discriminant function
(LDF)-based score function S(v|Ωl) = Ωl

Tv mentioned
early in the SVM design, which is simply an inner prod-
uct between the weight vector Ωl of the l-th class and

the unknown vector v. Another commonly used exam-
ple is to model each class by a GMM, so that we have
S(v|λl), evaluating the likelihood of observing v under
GMM λl . Artificial neural networks (ANNs) [42.36] are
another popular approach that can be used to approx-
imately map the input vectors to the output decisions.
Results of using both LDF- and ANN-based general-
ized classifier design approaches have been recently
reported in [42.37] for spoken language classification
in the 2005 NIST LRE task. Classifier learning is
based on the minimum classification error (MCE) and
maximal figure-of-merit (MFoM) training principles
which have been extensively studied in and success-
fully applied to speech recognition [42.38], and text
categorization [42.6] tasks.

42.5 Language Classification Experiments and Discussion

We illustrate the VSC framework for the language iden-
tification results on the primary subset of 30 s test
segments of the 1996 NIST LRE task. On the other
hand, language verification benchmarks are established
based on the 1996 and 2003 NIST LRE tasks.

42.5.1 Experimental Setup

The training sets for building models came from three
sets of corpora, namely: (i) the three-language IIR-LID
database [42.7] with English, Mandarin, and Korean;
(ii) the six-language OGI-TS (multilanguage telephone
speech, http://cslu.cse.ogi.edu/corpora/corpCurrent.html
) database with English, German, Hindi, Japanese,
Mandarin, and Spanish; and (iii) the 12-language Lin-
guistic Data Consortium (LDC) CallFriend database.
The overlap between the CallFriend database and
the 1996 LRE data was removed from the train-
ing data as suggested http://www.nist.gov/speech/tests/
index.htm for 2003 LRE. As English, Mandarin, and
Spanish each have two accented versions in the Call-
Friend database, in all, we were given a 15-language set,
which includes the three additional accents. The IIR-LID
and OGI-TS databases were only used for bootstrapping
the acoustic models as an initial set of phones. Both
IIR-LID and OGI-TS databases are telephone speech
with phonetic transcriptions. In addition, the CallFriend
database was used for fully fledged ASM acoustic mod-
eling, vectorization, and classifier design. It contains
telephone conversations of the same 12 languages that
are in the 1996 and 2003 NIST LRE tasks, but with-

out phonetic transcriptions. The three databases were
recorded independently of each other.

In the IIR-LID database, each language contains
more than 150 hours of speech, while in the OGI-
TS database, each language amounts to less than
one hour of speech. Furthermore in the CallFriend
database, each of the 15 language databases consists
of 40 telephone conversations with each lasting ap-
proximately 30 min, giving a total of about 20 hours
per language. For vectorization and classifier design,
each conversation in the training set was segmented
into overlapping sessions, resulting in about 12 000
sessions for each duration per language. For testing,
there were three different duration settings: 3, 10, and
30 s. The 1996 NIST LRE evaluation data consist of
1503, 1501, and 1492 sessions of speech segments
with 3, 10, and 30 s in length, respectively. The 2003
NIST LRE evaluation data consist of 1280 sessions
per duration. The test data were labeled with the 12
main languages only, without considering their accent
type.

We configured each ASM with a three-state left-
to-right hidden Markov model. It was found that
a 32-mixture Gaussian state density provides adequate
results as compared with a 16- or 8-mixture Gaussian
state [42.17]. It was also reported that the ASM set de-
rived from API II (258-ASM) slightly outperforms that
from API I (128-ASM) by having a broader acoustic cov-
erage [42.19]. We will adopt the 128-ASM for language
identification and the 258-ASM for language verification
experiments.
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Table 42.2 Error rates (ER%) and number of support vectorson 30 s NIST 1996 LRE

No. sessions per language 1000 2000 6000 12 000 Testing cost (no. SVM decisions)

DAG (ER%) 18.2 16.2 14.4 13.9 L −1

Max. wins (ER%) 19.0 16.7 15.1 14.5 L × (L −1)/2

No. support vectors 1048 1457 1951 2142

With 15 languages including accents in the Call-
Friend database, we trained 105 = 15 × (15−1)/2 OVO
SVMs to model the languages and accents. In language
identification, we implemented both MW and DAG de-
cision strategies based on OVO SVMs. The conventional
language model (LM) scoring techniques used in the par-
allel phone recognition followed by language modeling
(P-PRLM) approaches [42.1] can also be used as a back-
end to contrast the VSC back-end discussed earlier. For
language verification, to appreciate the contributions of
the different front- and back-ends, we construct and test
four combination systems using the PVT and UVT front-
ends, and the VSC and LM back-ends. In the 1996 NIST
LRE task, we built a system to identify 12 languages.

42.5.2 Language Identification

For language identification, the objective is to iden-
tify the most likely language given a test sample, as
illustrated in Fig. 42.2a. This is usually considered as
a closed-set problem assuming that all the languages
to be decided are known to the system in advance. We
follow the experiment setup in the NIST LRE tasks,
and the evaluation is carried out on recorded telephony
speech of 12 languages for the 1996 and 2003 NIST
LRE: Arabic, English, Farsi, French, German, Hindi,

���
��

����	
����
��������	��������	
��������	

�

�
�
�	����
��

��� ���� ���� �����

��

��

��

Fig. 42.5 Error rates (ER%) as a function of training set
size evaluated on 30 s NIST 1996 LRE

Japanese, Korean, Mandarin, Spanish, Tamil, and Viet-
namese.

It is well known that the size of the training set of-
ten affects the performance of a pattern classification
system significantly. Let us study the effects of training
set size on system performance using the DAG strategy.
We proceed with the document vectors based on bigram
AWs derived from the 128-ASM set. In Fig. 42.5, we
reported the language identification error rate as a func-
tion of the number of training sessions (vectors). As
the number of training sessions increase, the training
cost of SVMs increase as well. The full corpus includes
12 000 spoken documents, or sessions, for each lan-
guage/accent. The subset was randomly selected from
the full corpus with an equal amount of data from each
language. We observe that, when subset size grows be-
yond 8000 sessions per language, performance begins
to saturate.

In Table 42.2, we compare the error rates using dif-
ferent training corpus sizes evaluated on the 30 s NIST
1996 LRE test set. We also report the number of result-
ing support vectors in the set of binary SVMs. When the
number of sessions per language was 1000, there were
2000 training vectors for each language pair. The two-
class SVMs gave about 1048 support vectors per binary
SVM on average. Note that the number of support vec-
tors increases as training corpus grows, but at a much
slower rate than that of the training corpus size. When
the training corpus size grows by 12 times, the num-
ber of support vectors only doubles. This explains the
fact that, beyond 8000 sessions, increasing the training
corpus size does not translate into substantial accuracy
improvements.

As discussed in Sect. 42.4.1, both the MW and DAG
SVM strategies make decisions based on the same OVO
SVMs. We further compare the performance of the two
strategies in Table 42.2. It is worth pointing out that it is
much less expensive to train a set of OVO SVMs than
a set of OVR SVMs [42.30]. From the perspective of
computation cost in testing, the DAG strategy involves
L/2 times less computation than MW does. The DAG
approach also demonstrates superior performance to that
obtained from the MW strategy in terms of accuracy
consistency on all tests.
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42.5.3 Language Verification

In the case of language verification, the goal is to verify
whether a language identity claim is true or false. To
this end, a typical VSC back-end consists of multiple
independent Bayes decisions, each making a decision
for a candidate language, as in Fig. 42.2b. Language
verification is an open-set hypothesis testing problem.
The language verification experiments discussed next
follow the procedure in Sect. 42.4.3. We have described
the two different front-ends, PVT and UVT, with both
the VSC and LM back-ends. To gain further insight
into the behavior of each of the front- and back-ends,
it is desirable to investigate the performance of each of
the four system combinations, namely PVT–LM, PVT–
VSC, UVT–LM, and UVT–VSC, where the PVT/UVT
front-ends are built on a set of universal ASMs.

Without loss of generality, we deployed the same
258-ASM in two different settings. First, the 258 ASMs
were arranged in a six-language PVT front-end. They
were redistributed according to their API II definitions
into three languages. Second, they were lumped together
in a single UVT front-end. The training of 258-ASM was
discussed in Sect. 42.2.2.

The PVT/UVT front-end converts spoken docu-
ments into high-dimensional vectors as illustrated in
Fig. 42.2a,b. The six-language PVT front-end gener-
ates vectors of 11 708 (= 482 +392 +522 +512 +322

+362 +48+39+52+51+32+36) dimensions (PVT
vectors), while the UVT front-end generates those of
66 822

(= 2582 +258
)

dimensions (UVT vectors).
We can use the vectors generated by the PVT and

UVT front-ends directly. We can also use the scores
generated by the binary classifiers. With the OVO
SVMs, we further convert the document vectors into
105 = 15 ×(15−1)/2 attributes, with each attribute rep-
resenting a signed distance between a document vector
and the decision hyperplane of an OVO SVM. This score
supervector represents 99.1% and 99.8% dimensional-
ity reductions from the original PVT and UVT vector
dimensions, respectively. We further train 512-mixture
GMMs, λx+ and λx− , for each of the languages, and re-
port the equal error rates (EER in percentage) between
misdetections and false-alarms.

The UVT–LM system follows the block diagram
of the language-independent acoustic phone recogni-
tion approach [42.12]. The PVT–LM is implemented
as in [42.1]. The LM back-end uses trigrams to derive
phonotactic scores. The results on the 1996 and 2003
NIST LRE tasks are reported in Tables 42.3 and 42.4,
respectively.

Table 42.3 Equal error rates (ERR%) comparison of four
systems on NIST 1996 LRE

System 30 s 10 s 3 s

PVT–VSC 2.75 8.23 21.16

PVT–LM 2.92 8.39 18.61

UVT–VSC 4.87 11.18 22.38

UVT–LM 6.78 15.90 27.20

Table 42.4 Equal error rates (ERR%) comparison of four
systems on NIST 2003 LRE

System 30 s 10 s 3 s

PVT–VSC 4.02 10.97 21.66

PVT–LM 4.62 11.30 21.18

UVT–VSC 6.81 13.75 24.44

UVT–LM 10.81 19.95 30.48

Before looking into the results, let us examine the
combinative effect of the front- and back-ends. In these
combinative systems, there are two unique front-end
settings, PVT and UVT. The PVT converts an input
spoken utterance into six spoken documents using the
parallel front-end, while the UVT converts an input into
a single document. The LM in the PVT–LM and that in
the UVT–LM are different; the former has 6×12 n-gram
language models while the latter has only 12 language
models. That is to say, the former LM classifier is more
complex, with a larger number of parameters. On the
other hand, the VSC in the PVT–VSC and the VSC
in the UVT–VSC are of different complexities as well.
Although the dimensionality of the supervector from
PVT is lower than that of UVT, the supervector is several
times as dense as that of UVT because there are many
low-occurrence AWs in the case of UVT, resulting in
more-complex SVMs [42.26]. In other words, the VSC
classifier in the PVT–VSC is more complex than that in
UVT–VSC. In terms of the overall classifier back-end
complexity, we rank the four systems from high to low
as follows: PVT–VSC, PVT–LM or UVT–VSC, and
UVT–LM.

We now summarize what we have discussed: (i) the
VSC back-end demonstrates a clear advantage over the
LM back-end for the 30 s trials, while LM works better
for the 3 s trials in general. This can easily be ex-
plained by the fact that the VSC models are designed
to capture higher-order phonotactics. As a result, VSC
favors long utterances which provide a richer set of
long span phonotactic information over short utterances;
(ii) the system performance correlates highly with the
complexity of system architectures. This can be found
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consistently in Tables 42.3 and 42.4, where the PVT–
VSC presents the best result with an EER of 2.75%
and 4.02% for the 30 s 1996 and 2003 NIST LRE
tasks, respectively. It is then followed by PVT–LM,
UVT–VSC, and UVT–LM. Note that we can increase
the system complexity by including more phone rec-
ognizers in PVT. We expect more phone recognizers
to further improve the PVT–VSC system performance.
As a general remark, the OVO SVM followed by the
DAG decision strategy is shown to be computation-
ally effective in both training and testing in language
identification. The OVO SVM also delivers outstanding
system performances in both identification and verifica-
tion tasks.

42.5.4 Overall Performance Comparison

We summarize the overall performance of the SVM ap-
proach and compare its results with other state-of-the-art
systems recently reported in the literature. Only the re-
sults of the 30 s segment testing, which represent the
primary interest in the LRE tasks, are listed in Table 42.5.
Here systems 1–3 are trained and tested on the same
database configuration. Therefore, the results can be di-
rectly compared. We extract the corresponding results
from Tables 42.3 and 42.4. Two sets of recently reported
results are worth mentioning. They are listed under sys-
tems 4 and 5, and extracted from [42.39] and [42.40],
respectively. It is clear from the results in Table 42.5 that
the performance of the PVT–VSC system represents one

Table 42.5 Equal error rates (ERR%) benchmark on 30 s
NIST 1996/2003 LRE (in [42.40], Russian data are ex-
cluded)

System 1996 LRE 2003 LRE

1 PVT–VSC 2.75 4.02

2 PVT–LM 2.92 4.62

3 UVT–VSC 4.87 6.81

4 Phone lattice [42.39] 3.20 4.00

5 Parallel PRLM [42.40] 5.60 6.60

of the best reported results on the 1996 and 2003 NIST
LRE tasks.

The proposed VSC-based language classifier only
compares phonotactic statistics from spoken documents.
We have not explored the use of the acoustic scores re-
sulting from the tokenization process. It was reported
that there is a clear win in combining information
about the acoustic scores along with the phonotac-
tic statistics [42.12, 40, 41]. Furthermore, the fusion
of phonotactic statistics at different levels of resolu-
tions also improves overall performance [42.42]. We
have good reasons to expect that fusion among our four
combinative systems, or between our systems and other
existing methods including the acoustic score classi-
fier [42.41] and GMM tokenizer [42.43], will produce
further improvements. This has been demonstrated by
some recently reported results, such as the 2.70% EER
on the 2003 NIST LRE in [42.39]. However, it is beyond
the scope of this chapter to discuss classifier fusions.

42.6 Summary

We have presented a vector-based spoken language clas-
sification framework that addresses a range of questions
from the theoretical issue of the nature of the mind to
more-practical aspects such as design considerations. As
a case study, this chapter covers three areas: (i) a vector
space characterization strategy for representing spoken
documents; (ii) a systematic discussion of language
identification and verification formulation cast in the
discriminative classifier design strategy; (iii) a number
of practical issues for system implementation in appli-
cations such as the NIST LRE. Using a conventional
SVM classifier design with the PVT front-end and VSC
back-end combination, we achieved an EER of 2.75%
and 4.02% in the 30 s 1996 and 2003 NIST LRE tasks,
respectively. This represents one of the best reported
results using a single classifier.

We have studied a number of practical issues in
ensemble classifier design, such as the computational
needs in the training and testing of different strate-
gies. In language identification, we have successfully
demonstrated through a case study that DAG is a better
solution than MW in terms of computational efficiency
and system accuracy. Multiclass SVM by itself is still
an ongoing research issue. Moving forward, recent
progress in discriminative classifier designs, such as
MFoM [42.6] and decomposition method [42.25] for
monolithic solutions to multiclass problems, will result
in further improvements. In language verification, we
introduced the concept of using SVM decision hyper-
planes as the projection directions for dimensionality
reduction. This allows us to carry out language verifi-
cation under the classical GMM framework. The use of
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OVO SVM outputs can also be seen as an implemen-
tation of the concept of error-correcting output coding
(ECOC) [42.44, 45], which makes classification deci-
sion by a consensus among subordinate classifiers. One
of the central issues in ECOC is choosing a good code.
It will be interesting to study other ECOC codes beyond
OVO SVMs.

One of the important properties of vectorization
is that it handles the fusion of different types of lan-
guage cues in a high dimensional vector seamlessly.
We have successfully implemented the bag-of-sounds
spoken document vectors using a mix of n-gram statis-
tics of acoustic letters. We believe that this framework
can be extended to accommodate heterogeneous at-
tributes such as acoustic and prosodic features as well.
Whereas fusion of classifier outputs has been the focus
of recent research [42.40, 46], vector space modeling

explores a new horizon where fusion can take place
at the feature level. The same classifier design theory
is applicable to other vector-based representation such
as GMM supervector [42.47], maximum-likelihood lin-
ear regression (MLLR) vector [42.48], and generalized
linear discriminant sequence (GLDS) vector representa-
tion [42.49].

In summary, vector-based spoken language classi-
fication benefits from progress in the areas of acoustic
modeling, machine learning, and text-based information
retrieval. We have successfully treated spoken language
classification as a text categorization problem with the
topic category being the language identity itself. The
same theory also applies to other spoken document clas-
sification tasks, such as topic detection and tracking,
and query-by-example spoken document retrieval. This
is another highly anticipated research direction.

References

42.1 M.A. Zissman: Comparison of four approaches to
automatic language identification of telephone
speech, IEEE Trans. Speech Audio Process. 4(1), 31–
44 (1996), 1

42.2 C.-H. Lee, F.K. Soong, K.K. Paliwal (Eds.): Automatic
Speech and Speaker Recognition: Advanced Topics
(Kluwer Academic, Dordrecht 1996)

42.3 J.L. Gauvain, L. Lamel: Large-vocabulary contin-
uous speech recognition: advances and applica-
tions, Proc. IEEE 88(8), 1181–1200 (2000)

42.4 G. Salton: The SMART Retrieval System (Prentice-
Hall, Englewood Cliffs 1971)

42.5 F. Sebastiani: Machine learning in automated text
categorization, ACM Comput. Surv. 34(1), 1–47 (2002)

42.6 S. Gao, W. Wu, C.-H. Lee, T.-S. Chua: A MFoM learn-
ing approach to robust multiclass multi-label text
categorization, Proc. ICML (2004) pp. 42–49

42.7 S. Gao, B. Ma, H. Li, C.-H. Lee: A text-categorization
approach to spoken language identification, Proc.
Interspeech (2005) pp. 2837–2840

42.8 J.R. Bellegarda: Exploiting latent semantic infor-
mation in statistical language modeling, Proc. IEEE
88(8), 1279–1296 (2000)

42.9 T.J. Hazen: Automatic Language Identification
Using a Segment-based Approach (MIT, Cambridge
1993), MS Thesis

42.10 K.M. Berkling, E. Barnard: Analysis of phoneme-
based features for language identification, Proc.
ICASSP (1994) pp. 289–292

42.11 K.M. Berkling, E. Barnard: Language identification
of six languages based on a common set of broad
phonemes, Proc. ICSLP (1994) pp. 1891–1894

42.12 C. Corredor-Ardoy, J.L. Gauvain, M. Adda-Decker,
L. Lamel: Language identification with language-

independent acoustic models, Proc. Eurospeech,
Vol. 1 (1997) pp. 55–58

42.13 C.-H. Lee, F.K. Soong, B.-H. Juang: A segment
model based approach to speech recognition, Proc.
ICASSP (1988) pp. 501–504

42.14 A.K.V.S. Jayram, V. Ramasubramanian, T.V. Sreeni-
vas: Language identification using parallel sub-
word recognition, Proc. ICASSP (2003) pp. 32–
35

42.15 J.L. Hieronymus: ASCII phonetic symbols for the
world’s languages: Worldbet, Technical Report
AT&T Bell Labs (1994)

42.16 Y.K. Muthusamy, N. Jain, R.A. Cole: Perceptual
benchmarks for automatic language identification,
Proc. ICASSP (1994) pp. 333–336

42.17 B. Ma, H. Li, C.-H. Lee: An acoustic segment model-
ing approach to automatic language identification,
Proc. Interspeech (2005) pp. 2829–2832

42.18 L.R. Rabiner: A tutorial on hidden Markov models
and selected applications in speech recognition,
Proc. IEEE 77(2), 257–286 (1989)

42.19 H. Li, B. Ma, C.-H. Lee: A vector space modeling
approach to spoken language identification, IEEE
Trans. Audio Speech Language Process. 15(1), 271–
284 (2007)

42.20 H.K.J. Kuo, C.-H. Lee: Discriminative training of
natural language call routers, IEEE Trans. Speech
Audio Process. 11(1), 24–35 (2003)

42.21 J. Chu-Carroll, B. Carpenter: Vector-based natural
languagecall routing, Comput. Linguist. 25(3), 361–
388 (1999)

42.22 H. Li, B. Ma: A phonotactic language model for
spoken language identification, Proc. ACL (2005)
pp. 515–522

Part
G

4
2



840 Part G Language Recognition

42.23 G.K. Zipf: Human Behavior and the Principal of
Least Effort, An Introduction to Human Ecology
(Addison-Wesley, Reading 1949)

42.24 K.S. Jones: A statistical interpretation of term
specificity and its application in retrieval, J. Doc.
28, 11–20 (1972)

42.25 C.-W. Hsu, C.-J. Lin: A comparison of methods for
multiclass support vector machines, IEEE T. Neural
Netw. 13(2), 415–425 (2002)

42.26 V. Vapnik: The Nature of Statistical Learning Theory
(Springer, Berlin, Heidelberg 1995)

42.27 A. Statnikov, C. Aliferis, I. Tsamardinos, D. Hardin,
S. Levy: A comprehensive evaluation of multicat-
egory classification methods for microarray gene
expression cancer diagnosis, Bioinformatics 21(5),
631–643 (2005)

42.28 J. Weston, C. Watkins: Multi-class support vector
machines, Tech. Rep. CSD-TR-98-04 (University of
London, London 1998)

42.29 Y. Lee, Y. Lin, G. Wahba: Multicategory support
vector machines, theory, and application to the
classification of microarray data and satellite ra-
diance data, J. Am. Stat. Assoc. 99(465), 67–81
(2004)

42.30 J.C. Platt, N. Cristianini, J. Shawe-Taylor: Large
margin DAG’s for multiclass classification, Advances
in Neural Information Processing Systems, Vol. 12
(Cambridge, MIT Press 2000) pp. 547–553

42.31 S. Katagiri, C.-H. Lee: A New Hybrid Algorithm
for Speech Recognition Based on HMM Segmen-
tation and Discriminative Classification, IEEE Trans.
Speech Audio Process. 1(4), 421–430 (1993)

42.32 K.-Y. Su, C.-H. Lee: Speech Recognition using
Weighted HMM and Subspace Projection Ap-
proaches, IEEE Trans. Speech Audio Process. 2(1),
69–79 (1994)

42.33 M. Kobayashi, M. Aono: Vector space models for
search and cluster mining. In: Survey of Text Min-
ing, ed. by M.W. Berry (Springer, Berlin, Heidelberg
2003)

42.34 R.O. Duda, P.E. Hart, D.G. Stork: Pattern Classifica-
tion (Wiley, New York 2001)

42.35 K. Crammer, Y. Singer: Improved Output Coding for
Classification Using Continuous Relaxation, Proc.
NIPS (2000) pp. 437–443

42.36 S. Haykin: Neural Networks: A Comprehensive
Foundation (McMillan, London 1994)

42.37 J. Li, S. Yaman, C.-H. Lee, B. Ma, R. Tong, D. Zhu,
H. Li: Language recognition based on score distri-

bution feature vectors and discriminative classfier
fusion, Proc IEEE Odyssey Speaker and Language
Reognition Workshop (2006)

42.38 S. Katagiri, B.-H. Juang, C.-H. Lee: Pattern Recog-
nition Using A Generalized Probabilistic Descent
Method, Proc. IEEE 86(11), 2345–2373 (1998)

42.39 J.L. Gauvain, A. Messaoudi, H. Schwenk: Language
recognition using phone lattices, Proc. ICSLP (2004)
pp. 1215–1218

42.40 E. Singer, P.A. Torres-Carrasquillo, T.P. Gleason,
W.M. Campbell, D.A. Reynolds: Acoustic, pho-
netic and discriminative approaches to automatic
language recognition, Proc. Eurospeech (2003)
pp. 1345–1348

42.41 P.A. Torres-Carassquilo, E. Singer, M.A. Kohler,
R.J. Greene, D.A. Reynolds, J.R. Deller Jr.: Ap-
proaches to language identification using Gaussian
mixture models and shifted delta cepstral features,
Proc. ICSLP (2002) pp. 89–92

42.42 B.P. Lim, H. Li, B. Ma: Using local and global
phonotactic features in Chinese dialect identifica-
tion, Proc. ICASSP (2005) pp. 577–580

42.43 P.A. Torres-Carrasquillo, D.A. Reynolds, R.J. Deller
Jr.: Language identification using Gaussian mixture
model tokenization, Proc. ICASSP (2002) pp. 757–
760

42.44 T.G. Dietterich, G. Bakiri: Solving multiclass learn-
ing problems via error-correcting output codes, J
Artif. Intell. Res. 2, 263–286 (1995)

42.45 H. Li, B. Ma, R. Tong: Vector-Based Spoken Lan-
guage Recognition using Output Coding, Proc.
Interspeech (2006)

42.46 R. Tong, B. Ma, D. Zhu, H. Li, E.S. Chng: Inte-
grating acoustic, prosodic and phonotactic features
for spoken language identification, Proc. ICASSP 1,
205–208 (2006)

42.47 W.M. Campbell, D.E. Sturim, D.A. Reynolds: Sup-
port vector machines using GMM Supervectors for
speaker recognition, IEEE Signal Process. Lett. 13(5),
308–311 (2006)

42.48 A. Stolcke, L. Ferrer, S. Kajarekar, E. Shriberg,
A. Venkataraman: MLLR transforms as features
in speaker recognition, Proc. Interspeech (2005)
pp. 2425–2428

42.49 W.M. Campbell, J.P. Campbell, D.A. Reynolds,
E. Singer, P.A. Torres-Carrasquillo: Support vector
machines for speaker and language recogni-
tion, Comput. Speech. Lang. 20(2-3), 210–229
(2005)

Part
G

4
2



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


	Schaltfläche: 


